文学范儿 > 专业文库 > 2号文库

2025年初中数学教案电子版51篇(通用)

会员上传 下载docx 收藏
更新时间: 发布时间:

初中数学教案电子版一

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

利用数形结合的方法验证公式

动手操作,合作探究课型新授课教具投影仪

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

第95页第3题

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案电子版二

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

p148 练习:3、4、5、6。

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

1、p150 习题a:3。

2、基础训练:同步练习1。

初中数学教案电子版三

1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

重点:二元一次方程的概念及二元一次方程的解的概念。

难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

1、一个数的3倍比这个数大6,这个数是多少?

2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

(板书:二元一次方程)

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

判断下列各式是不是二元一次方程

(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

知数的值,叫做二元一次方程的一个解。)

?若未知数设为x,y,记做x?,若未知数设为a,b,记做

?y?

(1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

a?4a?5a?0a?100

b?3b??1020b??b?6033

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

请找出这个方程的一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

独立完成课本第81页课内练习2

比较一元一次方程和二元一次方程的相同点和不同点

相同点:方程两边都是整式

含有未知数的项的次数都是一次

如何求一个二元一次方程的解

(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

10?xx?10①x?5?4y②x?10?4y③y?④y?44

(3x?7是方程2x?y?15的解。()(2)多选题:方程

y?1

x?7

(4)判断题:方程2x?y?15的解是。()y?1

是方程2x?3y?5的一个解,求a的值。(1)已知x??2

y?a

y?1

写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

初中数学教案电子版四

初中数学分层教学的理论与实践

天山六中裴焕民

分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。

分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。

1、教学现状呼唤分层教学的实施

义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。

2、新课程改革呼唤分层教学的实施

数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到

“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。

在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。

3、学生个体差异的客观存在

心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。

学生作为一个群体,存在着个体差异

(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。

(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。

(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。

4、分层次教学符合因材施教的原则

目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、

家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。

5、分层次教学能够有效推动教学过程的展开

按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。

捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。

1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。

2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在

备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。

3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。

1、掌握学习理论

布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。

2、教学最优化理论

巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。

3、新课标的基本理念

《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。

首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助

他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。

在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。

其次,在分层教学中应注意下列原则的使用:

①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;

②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;

③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;

④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;

⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;

⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。

(一)分层建组

把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让

初中数学教案电子版五

:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。

1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。

2、调动学生丰富的联想,养成一种思考的习惯。

教学重难点:"扑克"与年月日、季度的联系。

一、谈话引入

师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?

生:......

(教师补充,引发学生的好奇心。)

师: "扑克"还有一种作用,而且与数学有关!

生:......

二、新课

1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬

2、大王=太阳 小王=月亮 红=白天 黑=夜晚

3、a=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 j=11 q=12 k=13 大王=1 小王=1

4、所有牌的和+小王=平年的天数

所有牌的和+小王+大王=闰年的天数

5、扑克中的k、q、j共有12张,3×4=12,表示一年有12个月

6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。

7、一种花色的和=一个季度的天数

一种花色有13张牌=一个季度有13个星期

三、小结

生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。

初中数学教案电子版六

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

正确理解分类的标准和按照一定的标准进行分类

正确理解有理数的概念

探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学教案电子版七

初中数学分层次教学案例

【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案电子版八

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2.初步培养学生观察、分析和抽象思维的能力.

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

一、从学生原有的认知结构提出问题

1庇么数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2痹诖数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式北窘诳挝颐蔷屠匆黄鹧习这个问题

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律钡玜与b的差指的是(a-b),而b与a的差指的是(b-a)绷秸呙飨圆煌,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和

分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个

三、课堂练习

1鄙杓资为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2庇么数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数

3庇么数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄

四、师生共同小结

首先,请学生回答:

1痹跹列代数式?2绷写数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备币求学生一定要牢固掌握

五、作业

1庇么数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2币阎一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:=99a+b(cm)

今天的内容就介绍到这里了。

初中数学教案电子版九

把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。

1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则

2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。

3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。

针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

:利用移项解一元一次方程。

移项法则的探究过程。

引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )

a.3个老头,4个梨 b.4个老头,3个梨 c.5个老头,6个梨 d.7个老头,8个梨

设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项

1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。

2.会建立方程解决简单的实际问题。

设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。

1.出示自学指导

自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)

2.学生自学

学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。

3.交流展示(小组合作展示)

(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

1)设未知数:设这个班有x名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 x+20)本或(4x-25)本。

2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)

3)根据等量关系列方程: 3x+20 = 4x-25(板书)

【总结提升】解决“分配问题”应用题的列方程的基本要点:

a.找出能贯穿应用题始终的一个不变的量.

b.用两个不同的式子去表示这个量.

c.由表示这个不变的量的两个式子相等列出方程.

设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。

(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数

(只设列即可)

(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?

设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。

(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。

(板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。

《解一元一次方程——移项》教学设计(魏玉英)

师:为什么等式(方程)可以这样变形?依据什么?

(出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.

师:解一元一次方程中“移项”起了什么作用?

(出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)

(基础训练)抢答:判断下列移项是否正确,如有错误,请修改

《解一元一次方程——移项》教学设计(魏玉英)

设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。

【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1

(综合训练) 解下列方程(任选两题)

设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。

(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为

设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。

通过本节课的学习我收获了。

设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。

1.下列方程变形正确的是( )

a.由-2x=6, 得x=3

b.由-3=x+2, 得x=-3-2

c.由-7x+3=x-3, 得(-7+1)x=-3-3

d.由5x=2x+3, 得x=-1

2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)

3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。

(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。

请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。

设计意图:

让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。

初中数学教案电子版篇十

1.知识结构

2.重点和难点分析

重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

一个是夹在两条平行线间;

一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

3.教法建议

(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

平行四边形及其性质第一课时

一、素质教育目标

(一)知识教学点

1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.

2.掌握平行四边形的性质定理1、2.

3.并能运用这些知识进行有关的证明或计算.

(二)能力训练点

1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.

2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.

(三)德育渗透点

通过要求学生书写规范,培养学生科学严谨的学风.

(四)美育渗透点

通过学习,渗透几何方法美和几何语言美及图形内在美和结构美

二、学法引导

阅读、思考、讲解、分析、转化

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形性质定理的应用

2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.

3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.

四、课时安排

2课时

五、教具学具准备

教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具

六、师生互动活动设计

教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习

第一课时

七、教学步骤

1.什么叫做四边形?什么叫四边形的一组对边?

2.四边形的两组对边在位置上有几种可能?

(随着学生回答画出图1)

图1

在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).

1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.

2.平行四边形的表示:平行四边形用符号“

”表示,如图1就是平行四边形

,记作“

”.

align=middle>

图1

3.平行四边形的性质

讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.

平行四边形性质定理1:平行四边形的对角相等.

平行四边形性质定理2:平行四边形对边相等.

(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

图2如图3

所以四边形是平行四边形,所以.由此得到

推论:夹在两条平行线间的平行线段相等.

图3

要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4

4.平行线间的距离

从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

图5

注意:(1)两相交直线无距离可言.

(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

例1 已知:如图1,

初中数学教案电子版篇十一

(一)知识与技能

理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

(二)过程与方法

1.在经历用字母表示数量关系的过程中,发展符号感;

2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

(三)情感态度价值观

1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

重点:单项式及单项式系数、次数的概念。

难点:单项式次数的概念;单项式的书写格式及注意点。

引导——探究式

在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

多媒体课件、小黑板.

一、 创设情境,引入新课

出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

情境问题:

青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

爱国主义情感,得到一次情感教育。

解:根据路程、速度、时间之间的关系:路程=速度×时间

2小时行驶的路程是:100×2=200(千米)

3小时行驶的路程是:100×3=300(千米)

t小时行驶的路程是:100×t=100t(千米)

注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。

如:100×a可以写成100a或100a。

代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

二、合作交流,探究新知

探究

思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

1、边长为a的正方体的表面积是__,体积是__.

2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

4、数n的相反数是__。

解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

思考:它们有什么共同的特点?

6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

单项式:数与字母、字母与字母的乘积。

注意:单独的一个数或字母也是单项式。

设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

火眼金睛

下列各代数式中哪些是单项式哪些不是?

(1)a (2) 0 (3) a2

(4) 6a (5)

(6)

(7)3a+2b (8)xy2

设计意图:加强学生对不同形式的单项式的直观认识。

解剖单项式

系数:单项式中的数字因数。

如:-3x的系数是 ,-ab的系数是 , 的系数是 。

次数:一个单项式中的所有字母的指数的和。

如:-3x的次数是 ,ab的次数是 。

小试身手

单项式 2a 2 -1.2h xy2 -t2 -32x2y

系数

次数

设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

单项式的注意点:

(1)数与字母相乘时,数应写在字母的___,且乘号可_________;

(2)带分数作为系数时,应改写成_______的形式;

(3)式子中若出现相除时,应把除号写成____的形式;

(4)把“1”或“-1”作为项的系数时,“1”可以__不写。

行家看门道

①1x ②-1x

③a×3 ④a÷2

⑤ ⑥m的系数为1,次数为0

⑦ 的系数为2,次数为2

设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

三、例题讲解,巩固新知

例1:用单项式填空,并指出它们的系数和次数:

(1)每包书有12册,n包书有 册;

(2)底边长为a,高为h的三角形的面积 ;

(3)一个长方体的长和宽都是a,高是h,它的体积是 ;

(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

为 元;

(5)一个长方形的长0.9,宽是a,这个长方形的面积是 .

解:(1)12n,它的系数是12,次数是1

(2) ,它的系数是 , 次数是2;

(3)a2h,它的系数是1,次数是3;

(4)0.9a,它的系数是0.9,次数是1;

(5)0.9a,它的系数是0.9,次数是1。

设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

试一试

你还能赋予0.9a一个含义吗?

设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

大胆尝试

写出一个单项式,使它的系数是2,次数是3.

设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

四、拓展提高

尝试应用

用单项式填空,并指出它们的系数和次数:

(1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;

(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;

(3)产量由m千克增长10%,就达到 千克;

设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

能力提升

1、已知-xay是关于x、y的三次单项式,那么a= ,b= .

2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .

设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

五、小结:

本节课你感受到了吗?

生活中处处有数学

本节课我们学了什么?你能说说你的收获吗?

1、单项式的概念: 数与字母、字母与字母的乘积。

2、单项式的系数、次数的概念。

系数:单项中的数字因数;

次数:单项中所有字母的指数和。

3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

结束寄语

悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

六、板书设计

2.1 整式

单项式概念 探究 例1 多

单项式的系数概念 观察交流 尝试应用 媒

单项式的次数概念 能力提升 体

七、作业:

1.作业本(必做)。

2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

八、设计理念:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初中数学教案电子版篇十二

1、引导同学们领略数学隐藏在生活中的迷人之处;

2、培养同学们对数学的兴趣。

生活中的数学。

启发探索、小游戏

多媒体、剪纸、小剪刀三把

师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗?

学生讨论。

师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:

请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(ppt演示)

[1]首先,随意挑一个数字(0、1、2、3、4、5、6、7)

[2]把这个数字乘上2

[3]然后加上5

[4]再乘以50

[5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758

[6]最后一个步骤,用这个数目减去你出生的那一年(公元的)

师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(ppt演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸,如图所示:

网路图

居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不

重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。

学生思考设计。

师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。

1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥,如图:

b

现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。

学生思考。

师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?

其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(ppt演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。

他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个

奇结点开始,到另一个奇结点结束。

师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。

现在请同学们自己在练习本上解决这个问题:(ppt演示)

下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?

学生思考讨论。

师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。

那如果农场主将门的形状做成这样呢?(ppt演示)

学生尝试。

师:是不是可以啦,为什么呢?

生:奇结点个数为2.

师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像

某些时候想的那样没什么用处了吧?

下面我们继续我们的奥秘之类吧。

今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。

其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。

为什么呢?这里我们用到三角形等高等底面积相等的性质。

吃完了蛋糕,我们来观赏一下百合花。(ppt演示):

一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?

学生讨论。

师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!

其实,除了以上我们看到的一些有趣的数学影子外,我们的日常生

初中数学教案电子版篇十三

教学目标

1.通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。2.通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。

1.创设情境,通过实例引导学生考虑多个不等式联合的解法。2.通过例题总结解一元一次不等式组的方法,并总结一元一次不等式组的解与一元一次不等式的解之间的关系。

1.通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方法。2.在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。

3.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美 教学重、难点 重点:掌握一元一次不等式组的解法,会用数轴表示一元一次不等式组解集 的情况。难点 :1.弄清一元一次不等式的解集与一元一次不等式组的解集之间的关系。2.灵活运用一元一次不等式组的知识解决问题。

教学过程

学生活动:请学生观看购物街转转盘游戏.(在看之前先让学生看一看游戏规则:转轮上平均分布着5、10、15一直到100共20个数字。每位选手最多有两次机会。选手转动转轮的数字之和,最大且不超过100者为胜出,可以获得相应的奖品。选手每次必须把转轮转动1圈才有效.)

设第三位选手第二次转的数字为x,他要胜出应满足什么条件? 预设学生

1x?10?75,预设学生2

x?10?教师提出问题:这两个条件只需满足一个还是缺一不可?

预设学生:同时具备??x?10?75

x?10?100?教师活动:

1、讲解联立符号的作用,并引入课题.2、给出定义:由几个含有同一未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组.【设计意图】从一个学生感兴趣的游戏入手.问题的提出具有一定的现实性和探究性,目的是激发学生探究新知的欲望,在教师的引导下,将生活中的问题转化为数学问题,从而引出本课题.学生活动

用心找一找:下列不等式组中哪些是一元一次不等式组?

?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?预设学生1:(2)(3)(4)(5)预设学生2:(2)(4)(5)预设学生3:(2)(4)

【设计意图】教师组织学生分组讨论,明析一元一次不等式组的定义.使学生进一步明确“几个含有同一个未知数的一元一次不等式组成.”

问题一:??x?10?75这两个不等式的解分别是什么呢?

x?10?100??x?65 ?x?90?问题二:怎么表示不等式组的解呢?

什么是不等式组的解呢?

【设计意图】通过这两个问题的探讨,让学生在解不等式的过程中得出不等式组的解法和不等式组的解的表示方法.文字语言:大于65小于或等于90的数.图形语言: o***0

数学式子:65<x≤90 学生活动:探究不等式组的解

问题:求下列不等式组的解,并找出其中的规律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7学生预设1:通过数轴,能求出不等式组的解

学生预设2:找不出其中的规律

【设计意图】让学生利用数轴寻找不等式组的解,并表示出来,引导学生找出其中的规律,培养学生善于现问题、总结规律的能力

学生活动:1.写出下列不等式组的解

(1)不等式组??x??5的解在数轴上表示为____________则不等式组的解为 x??2??x??5的解在数轴上表示为_______________则不等式组的解?x??2(2)不等式组?为

(3)不等式组??x??1的解为 x?2??x??1的解为 x?2?(4)不等式组 ?2.选择题:(1)不等式组??x?2的解是()x?2??2 ?2 c.无解 ?2(2)不等式组??x??2的负整数解是()x??3?a.–2,0,-1 b.-2 c.–2,-1 d.不能确定

【设计意图】让学生及时巩固,准确找出不等式组的解,在找不等式组的解的过程中引入整数解.四、合作小结,课外探索 学生活动:

1每位同学写一个以x为未知数的一元一次不等式;

2、同桌的两个不等式组在一起叫做什么?三位同学的不等式组在一起呢?

3、每位同学把你所写的不等式解出来;

4、同桌所组成的不等式组的解是什么?

【设计意图】通过问题串,在生生、师生互动的情况下,复习一元一次不等式组的定义和解.增强了学生之间的合作交流.五、布置作业

3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?

【设计意图】通过实际问题的解决,有利于学生体会到数学来源于生活,并能有效地复习巩固本堂课所学的知识和方法.【板书设计】

一元一次不等式组 ?x?10?75??x?10?100?x?65 文字语言:大于??x?9065小于或等于90的数.图形语言: o***0数学式子:65<x≤90

求下列不等式组的解,并找出其中的规律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)规律:大大取大,小小取小;

大小小大中间找

大大小小为

初中数学教案电子版篇十四

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

#formatimgid_0#

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好

推荐阅读:

  最大的书教学设计及反思(大全七篇)

  最新克与千克二年级数学教学设计(精选7篇)

  称象教学设计及反思(12篇)

  2025年雪儿教学设计 雪儿歌词优秀(10篇)

  最新识字教学反思(精选八篇)

  2025年教学反思万能十篇(优秀)