文学范儿 > 专业文库 > 2号文库

六年级下册数学教案怎么写

会员上传 下载docx 收藏
更新时间: 发布时间:

六年级下册数学教案怎么写5篇

教师只有平时重视对数学概念的教学,才能培养出学生的应变能力,关于六年级下册数学教案怎么写的呢?下面小编给大家带来六年级下册数学教案怎么写,希望大家喜欢!

六年级下册数学教案怎么写(篇1)

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50c:40=50c:4000c=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000c=50

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获 畅谈感想

这节课,你有什么收获?听课随想

六年级下册数学教案怎么写(篇2)

教学内容:

六年级下册第2~4页例1、例2。

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:

负数的意义。

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流。

……

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:… …)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨:-15 ℃~-3 北京: -5 ℃~5 ℃ 深圳: 12 ℃~23 ℃ 温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

(完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7.负数的历史。

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放): “中国是世界上最早认识和运用负数的国家,早在20__多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数并且规定用红色算筹表

示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

《认识负数》教学反思

六年级下册的第一堂数学课就是《认识负数》,对于学生来说是一个全新的概念,但又不是一无所知,可能在平时的生活中见过或听过。因此在备课时从教材出发,又和生活联系起来,设计了一个让学生熟悉而又觉得有趣味的教学过程。

一、从生活实际出发,引出课题

课的开始从“剪子包袱锤”的游戏入手,通过游戏让学生感受到相反的意思,为学好负数的意义做好铺垫。学生玩得很开心,在玩的过程中,学生首先建立一个表示相反意义的量的意识。接下来,她又设计了让学生根据信息记录相反意思的量,从而引出了负数的意义,并要求学生读、写负数,让学生感受到正数、负数都有无数个,就有了负数的集合,这样抓住了负数与过去所学的数之间的联系,感受了数的发展。

二、交流信息,使学生感到负数在生活中的广泛应用

在学生已经认识负数之后,利用温度计,使学生进一步理解0与正负数之间的关系,紧接着又列举了生活中的一些实例:坐电梯到地下的楼层应按哪个数字键?冰箱里的鱼、水中的鱼、刚烧熟的鱼该与哪个温度相连?海平面是怎么回事?高山和地面的高度如何测量,又如何表示?东、西方向的数轴是怎么回事?这部分内容的安排通过借助生活实例让学生对负数有了更深一层的了解,并在解决这些问题的同时,使学生感知负数在生活中的广泛应用,为学生解决生活中的问题奠定了基础。

三、巧妙利用时机,对学生进行爱国主义教育。

在小学数学教学中有机渗透德育教育,也是新课标倡导的理念之一,这节课上,在对学生进行负数产生史介绍时,让学生感受到了中国人民的勤劳与智慧,增加学生作为一个中国人的自豪感。在课的最后,胡老师安排了刘翔跑步中的风速问题,既让学生感受到可以利用负数的知识,解决生

六年级下册数学教案怎么写(篇3)

教学目标知识目标:

理解比例的意义,认识比例各部分的名称。

能力目标:

能运用比例的意义判断两个比能否组成比例,并会组比例。

情感目标:

感受数学的奥秘,培养数学兴趣。

教学重、难点教学

重点:理解比例的意义。

教学难点:能根据比例的意义写比例。

突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。

教学媒体多媒体课件、小黑板

教学活动及主要语言预设学生活动预设

一、创境激疑

上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。

回顾

产生疑问

二、互动解疑

1、比例的意义

在情境中感受两种相关联的量之间的变化规律。要求小组合作的'形式完成,提出要求。

(1)写出每个图片的长与宽的比

(2)求出各比的比值

(3)观察特点,写出规律

板书:

图片A:6:4=3:2=1.5

图片B:3:2=1.5

图片C:8:3=2.66……

图片D:12:8=3:2=1.5

图片E:12:2=6

比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。

结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。

巩固练习:

(1)要求每个学生写出一个比例,教师巡视指导且批阅。

(2)要求每个学生写出一个比例,同桌交流。

(3)做一做教材表格的题,完成后由教师批改。

2、认识比例各部分名称

组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。

在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:12:6=8:4中12和4是比例6和8是比例

观察

先独立思考

指名汇报

共同发现、小结

理解

自主思考

小组内交流探究

汇报交流

独立填写

同桌交流

指名汇报

三、启思导疑

1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)

2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)

指名谈发现

理解

识记

四、实践运用

(一)填一填。

1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。

2、用6,3,9,8组成一个比例是( )。

(二)下列那几组的两个比可以组成比例?为什么?

(1)4:5和8:20

(2)15:30和18:36

(3)0.7:4.9和140:20

(4)1/3:1/9和1/6:1/8

(三)按要求写一写。

1、先写出比值是3的两个比,再组成比例。

2、根据1.2×25=0.6×25写出两个比例式。

独立思考

指名汇报

评价订正

五、总结评价

这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?

自由小结

板书设计:比例的认识

12:6 = 8:4

6:4 = 3:2

六年级下册数学教案怎么写(篇4)

正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

3.注重积累数学学习经验,渗透数学思想方法。

4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

理解正比例的意义。

掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

教学课件。

一、激趣设疑,铺垫衔接。

1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

2.结合现实情境回忆常见的数量关系。

二、合作探究,发现规律。

1.教学例1

出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

预设:

(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的.关系吗?

根据学生的回答,板书:

提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

请学生完整地说一说表中的路程和时间成什么关系。

2.教学“试一试”。

让学生自主读题,根据表中已经给出的数据把表格填写完整。

谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

根据学生的回答,板书:

让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

3.抽象概括

请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

根据学生的回答,板书:,并揭示课题。

请大家想一想,生活中还有哪些成正比例的量?

三、分层练习,丰富体验

1.“练一练”第1题。

出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

学生按要求活动,并组织反馈。

提问:张师傅生产零件的数量和时间成正比例吗?为什么?

2.“练一练”第2题。

出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

3.练习十第1题。

先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

4.练习十第2题。

出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

结合学生的回答小结。

追问:判断两种相关联的量是否成正比例关系,关键看什么?

四、反思回顾,提升认识

谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

正比例的意义

两种相关联的量

六年级下册数学教案怎么写(篇5)

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:

综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的'体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

推荐阅读:

  初中物理教案怎么写

  感恩主题班会教案

  新学期开学第一课班会课件教案7篇

  人教版九年级上册数学教案

  防溺水课堂教学设计教案

  高三下册物理教案