-
相关文章
数学家的故事读后感400字(精选9篇)
数学是基础性学科,在人类历史发展,社会和生活中发挥着不可替代的作用,从古至今,涌现出了成千上万的富有创造性的数学家。文学范小编精心为大家整理了数学家的故事读后感400字,仅供大家参考学习,希望对大家有所帮助
说起华罗庚,大家都耳熟能详,他是世界着名数学家,中国科学院院士,美国国家科学院外籍院士。然后读完了他的传记之后使我对他有了重新的认识。
华罗庚,1911月12日出生于江苏省金坛县一个城市贫民的家庭,父亲拥有一间小商店。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。初中毕业后,华罗庚曾入上海中华职业学校就读,因家贫拿不出学费而中途退学。此后,他顽强自学,用5年时间学完了高中和大学低年级的全部数学课程。事实证明,成功都是来之不易的,没有人能不经历任何磨练获得成功,哪怕是天资聪明的人也需要靠自己的努力取得成功,没有人是完美的,即使在出生时,家庭有三六九等,有的人出生条件优越,家庭背景()好,而有些人却出生贫穷,然而这并不影响自己去奋斗去拼搏去努力,条件优越的需要与懒惰与傲慢作斗争,学会不依赖家庭,条件不好的则应该激励自己不懈努力。
他说“我要用健全的头脑,代替不健全的双腿”。凭着这种精神,他终于从一个只有初中毕业文凭的青年成长为一代数学大师。他一生硕果累累,是中国解析数论、典型群、矩阵几何学、自守函数论等方面的研究者和创始人,其着作《堆垒素数论》更成为20世纪数学论着的经典。在逆境中,他顽强地与命运抗争,即使挫败他也不曾放弃。一个人就算有天生的弱点也并不妨碍后天的努力,即使有外人的反对也应该坚持自己,华罗庚一生的成就能够说明这一切。他小时候的故事 也让我记忆深刻,他勇于反驳大人对事物的看法,他小时候曾对庙会的“菩萨”产生怀疑,大人们训斥他不尊敬佛祖,他不服气便偷偷跟踪“活菩萨”到了庙里发现事实后揭发了这个骗局。不得不说,华罗庚从小就有对一切事物好奇并且会有自己的判断,这是常人所缺乏的,因此从小的性格培养是十分重要的。{华罗庚传记读后感}.
我觉得华罗庚不仅是中国在世界上最有影响的数学家之一,华罗庚的一生奉献给了他所热爱的数学研究事业,他不追求名利,金钱,不为外人所影响。他不仅使我们对数学有了更深刻的了解,还给我们增加了在梦想道路上勇敢追求自己目标的动力……
《数学家的故事》讲述了许多位数学家小时候的故事,数学家的故事读后感。其中有两篇给我印象最深,分别是《小欧拉智改羊圈》和《数学神童希帕蒂亚》。
《小欧拉智改羊圈》讲述了欧拉爸爸设计了一个长40米,宽15米的长方形羊圈,施工过程中发现围羊圈的材料少了10米。父亲在增加材料和缩小羊圈之间难以取舍时,小欧拉想出了办法,他将长方形羊圈的长缩短了15米,宽延长了10米。经过这样一改,原来长方形的羊圈变成了一个边长25米的正方形。而正方形的周长是 25×4= 100米,正好比原来长方形的周长(15+40)×2=110米少了10米,这样材料刚好够用。同时正方形的面积是25×25=625平方米,也比原来面积40×15=600平方
米大了一些。欧拉的方法做到了一举两得,既节省了材料,又扩大了面积。
《数学神童希帕蒂亚》讲述了女数学家希帕蒂亚10岁时,父亲带她去测量金字塔高度的故事。在一般人的眼中,测量物体的高度是件很简单、很容易的事情。可是因为希帕蒂亚的父亲是一位数学家,他要求女儿用最简单的方法来测量,这可就不容易了。小希帕蒂亚在和父亲散步时,意外的发现自己的影子和父亲的影子重合了,由此聪明的希帕蒂亚想到了运用身高和影子长度成正比例的方法间接测量金字塔的高度。因为:人的身高/人的影子长=金字塔高/金字塔影子长,所以在已知人的身高的条件下,分别测量出金字塔影子的长度和人的影子的长度,就可以很容易的计算出金字塔的实际高度了。
小欧拉和希帕蒂亚没有按常人固有的思路去思考问题,而是开动脑筋另辟蹊径,用别人意想不到的方法解决了生活中的难题。跟欧拉和希帕蒂亚比起来,我感到脸红。每当在学习中有了困难和问题时,我很少换一种方法去思考,总是直接求教于妈妈和老师。通过读欧拉和希帕蒂亚的故事,我深深体会到勤思考、善观察、多角度思考问题的重要,读后感《数学家的故事读后感》。
同学们!当我们在学习和生活中被难题所困扰时,不仿学学欧拉和希帕蒂亚,换一种方法去思考,很可能难题就迎刃而解了。
生活中数学无处不在,买东西、分东西、度量等都能用到它。读了《欧拉的故事》后,我更加觉得数学奇妙无比,发人深省。
文中的《小欧拉智改羊圈》讲述了欧拉爸爸设计了一个长40米,宽15米的长方形羊圈,施工过程中发现围羊圈的材料少了10米。父亲在增加材料和缩小羊圈之间难以取舍时,小欧拉想出了将长方形羊圈变成了一个边长25米的正方形羊圈,解决了父亲的难题。当读到这里时,我非常羡慕欧拉的聪明才智,对他是无比的崇拜:小欧拉没有按常人固有的思路去思考问题,而是开动脑筋另辟蹊径,用别人意想不到的方法解决了生活中的难题。欧拉的这种方法做到了一举两得,既节省了材料,又扩大了面积。
跟欧拉比起来,我感到很是脸红。每当在学习中遇到困难时,我很少积极的去解决问题,常常是直接求教于老师或妈妈,只要完成就行,更别说换一种方法去思考,另辟蹊径啦。通过读欧拉的这个故事,我深深体会到勤思考、善观察、多角度思考问题的重要性,既要想别人之所想,又要想别人所不能想,想要超过别人,先要超越自己。当我们在学习和生活中被难题所困扰时,不仿学学欧拉,换一种方法去思考,很可能难题就迎刃而解了。
我艳羡欧拉的智慧,也深深同情他的不幸。
欧拉一生遭遇了许多不幸:欧拉28岁,因赢得一项天文学的巴黎大奖(计算彗星轨道),连续工作了三天三夜,导致右眼失明;不久,左眼也失明了。之后的岁月里,欧拉的8个孩子又先后夭折;晚年的一场大火几乎烧完他一生的手稿和著作。但沉重的打击没有使欧拉倒下。
当我读到这里的时候,我想:欧拉是多么的坚强!面对厄运始终不低头、不放弃。而我遇到一点点小小的挫折就灰心丧气:当我穿衣服时曾经为一条裤腿没反过来而懊恼时;当我吃饭时曾为饭菜太烫而犯愁时;当我在小区停电后而觉得无法生活时;当我为步行上学而觉得腰酸腿疼时;当我为在家写作业、背课文妈妈不在身边而生气时。现在想想都觉得好笑,我跟欧拉相比,简直是天渊之别!
欧拉是一面镜子,昭示着后人,欧拉善于动脑筋思考问题的品质,勤奋的学习态度、顽强的精神毅力,是我们所有人的老师!是我们学习到的榜样!
瑞士著名数学家莱昂哈德・欧拉(1707~1783)一生诸多磨难,但他为后人留下了极为丰富的著作,成为18世纪科学界最为杰出的人物之一。
年轻时的欧拉,可以说是才华横溢,学业一帆风顺。17,年仅13岁的欧拉成为瑞士巴塞尔大学学生,15岁获学士学位,17岁成为该校有史以来最年轻的硕士。经丹尼尔・伯努利推荐,1727年,欧拉到俄国圣彼得堡科学院工作,1731年成为物理学教授,接替了圣彼得堡科学院的领导工作。正当他事业如日中天的时候,年仅28岁的欧拉,因大量写作造成眼疾,右眼失明。即便如此,欧拉在俄国的中,在分析学、数论和力学方面,仍然取得了卓越的成就,并解决了许多地图学、造船业中出现的实际问题。
1741年,欧拉应腓特烈大帝的邀请,成为柏林科学院院士,并担任物理数学所所长,时间长达25年。在这段日子里,欧拉发表了一系列著作,解决了众多科学上的难题,如包含了三体问题的较完整的月球运动理论等等。1766年,应俄国女皇叶卡捷琳娜二世的邀请,欧拉返回俄国。不幸的是,几年之后一场重病夺去了他的左眼,使他完全陷入黑暗之中。接踵而来的是一场大火,吞噬了欧拉的大量书稿和藏书。他被仆人冒死从火海中救出来,总算逃脱了一场劫难。面对一系列飞来横祸,欧拉没有悲观失望,他凭着超人的记忆和天才的心算技巧,通过与助手讨论、口授等方式,在全盲的最后中,完成了400多篇论文和几部专著。这一时期的科学著作,几乎占了他一生著作的一半。关于月球运动的第二种理论,就是他在失明之后的又一功绩,是靠艰巨的心算完成的。
在欧拉不平凡的一生中,为后人留下了886件科学论文和书籍,内容极其广泛,在许多方面都有重大的开创性的贡献。据统计,他的科学著述中,分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等约占3%。圣彼得堡科学院花了47年时间整理他的著作。瑞士著名数学家埃米尔・费尔曼认为欧拉的'声望,“堪与大科学家伽利略、牛顿和爱因斯坦齐名。”
欧拉不仅给后人留下了极为丰富的科学遗产,他献身科学的崇高的精神境界,也为后人树立了光辉典范。
放假这几天学校要求我们读数学家小故事。我看了许多篇小故事,其中有两篇小故事给我的印象极为深刻,它们分别是《小欧拉智改羊圈》和《数学神童希帕蒂亚》。
《小欧拉智改羊圈》讲述了欧拉爸爸设计了一个长40米,宽15米的长方形羊圈,施工过程中发现围羊圈的材料少了10米。父亲在增加材料和缩小羊圈之间难以取舍时,小欧拉想出了办法,他将长方形羊圈的长缩短了15米,宽延长了10米。经过这样一改,原来长方形的羊圈变成了一个边长25米的正方形。而正方形的周长是 25×4= 100米,正好比原来长方形的周长(15+40)×2=110米少了10米,这样材料刚好够用。同时正方形的面积是25×25=625平方米,也比原来面积40×15=600平方米大了一些。欧拉的方法做到了一举两得,既节省了材料,又扩大了面积。
《数学神童希帕蒂亚》讲述了女数学家希帕蒂亚10岁时,父亲带她去测量金字塔高度的故事。在一般人的眼中,测量物体的高度是件很简单、很容易的事情。可是因为希帕蒂亚的父亲是一位数学家,他要求女儿用最简单的方法来测量,这可就不容易了。小希帕蒂亚在和父亲散步时,意外的发现自己的影子和父亲的影子重合了,由此聪明的希帕蒂亚想到了运用身高和影子长度成正比例的方法间接测量金字塔的高度。因为:人的身高÷人的影子长=金字塔高÷金字塔影子长,所以在已知人的身高的条件下,分别测量出金字塔影子的长度和人的影子的长度,就可以很容易的计算出金字塔的实际高度了。
小欧拉和希帕蒂亚没有按常人固有的思路去思考问题,而是开动脑筋另辟蹊径,用别人意想不到的方法解决了生活中的难题。
跟欧拉和希帕蒂亚比起来,我感到脸红。每当在学习中有了困难和问题时,我很少换一种方法去思考,总是直接求教于妈妈和老师。通过读欧拉和希帕蒂亚的故事,我深深体会到勤思考、善观察、多角度思考问题的重要。
以后每当我们在学习和生活中被难题所困扰时,不仿学学欧拉和希帕蒂亚,换一种方法去思考,很可能难题就迎刃而解了。
今天,我读了《数学家的故事》,让我印象最深的是数学家华罗庚。
华罗庚(1910年——1985年)出生在江苏省金坛县,小时候是个调皮、贪玩的孩子,可是对数学却很感兴趣。他在读完中学后,因为家里贫穷,交不起学费,从此华罗庚失学了,他回到家后只能依靠卖点小东西生活。
不能上学并没有阻挡华罗庚爱数学的势头,他从此以后便自己学,一年到头华罗庚几乎每天都要用十几个小时来学习,勤奋好学的他走进了数学王国。(1)1930年在熊庆来教授的帮助下,华罗庚到了清华大学数学系当一名图书管理员,他一人干几个人的事,却还在继续自学。功夫不负有心人,华罗庚终于成了我国著名的数学家!
读了《数学家华罗庚的故事》我明白了,一个人不论干什么事都要坚持不懈,那样才可以实现自己的梦想!
近期,我看了一本书,名字叫《数学家的故事》,其中最让我敬佩的就是华罗庚,这位伟大的数学家所发生的故事了。
华罗庚因病左腿残疾,所以,他平时走路都需要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步伐,他曾幽默地戏称为“圆与切线的运动”。
在逆境中,他顽强的与命运抗争。增发过誓言,说:“我要用健全的头脑,来代替我这不健全的腿!”凭着这种顽强的精神与毅力,他终于从一个只有初中毕业文凭的'青年成长为一代数学大师。
华罗庚一生硕实累累,是中国解析数论、典型群、矩阵几何学、自导函数论等方面的研究者和创始人。其着作《对垒素数论》,更成为20世纪数学论着的经典。华罗庚因为有了这种对生活的坚持不懈以及充满希望的精神,所以,他在逆境中登上数学的最高峰。
是啊,学数学少不了的是那种顽强的精神。我一定会向华罗庚,这位伟大的数学家学习决不放弃的毅力!
今天我读了一本书叫数学家的故事,其中伟大数学家祖冲之推算圆周率的故事给我留下了深刻印象。
圆周率就是指圆的周长和直径的长度比,这是一个无限不循环小数,各位数字的变化又没有规律,计算它是一件很不容易的事。祖冲之从圆的内接正六边形开始,先算内接正十二边形的边长,再算内接正二十四边形边长……边数一倍又一倍地增加,一共要翻十一翻,直到算出了内接正一万二千二百八十八边形的边长,才能得到这样精密的圆周率,这是多么不容易啊!
看了这个故事,我深深地被祖冲之这种精神所感动,要是没有熟练的技巧和坚强的毅力,他怎能完成这上百次繁难复杂的运算?在想想自己平时做数学题的时候,遇上复杂的题目几次做不出来就想放弃,缺少了祖冲之这种刻苦专研的精神。
遇到简单的题目时,就自以为自己都会了,没有好好计算,结果出现了不该有的错误。如果祖冲之像我们这样马虎,那他圆周率的精确度该差多远啊!
其实,无论做什么事情都离不开“认真”和“仔细”四个字。所以,我们对待每件事都要有像祖冲之算圆周率那样的认真态度,只有这样,才会有让你愉快的好结果。
暑假里,我读了一本书,书的姓名叫《数学家的故事》,讲述了许多数学名人的故事。好比毕达哥拉斯、阿基米德、高斯…其中,我最感兴趣的是有关祖冲之的故事。
祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过相当长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。可是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。
最终,《大明历》没通过,后来在祖冲之往世后10年,《大明历》才颁布实行。读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正由于他有这样的精神,才能持之以恒地坚持。
是啊,任何事情要取得成功,全部离不开"坚持"两个字。不由地,我想到了许多人,有文化名人、爱国将士,和我身边的同学。读《数学家的故事》让我更加爱数学,更让我明白得了许多道理。