文学范儿 > 专业文库 > 2号文库

2023年初中数学教案优秀范文模板

会员上传 下载docx 收藏
更新时间: 发布时间:

20_年初中数学教案优秀范文模板

数学教师要培养学生分析、观察、归纳的能力和推理论证的能力,渗透由特殊到一般,再由一般到特殊的认识事物的规律,培养学生去发现规律的积极性及勇于探索的精神。下面文学范大家整理的关于2023年初中数学教案优秀范文模板,应当随时学习,学习一切;应该集中全力,以求知道得更多,知道一切,希望能对大家有所帮助。

初中数学教案范文一:公式法

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.

重点

求根公式的推导和公式法的应用.

难点

一元二次方程求根公式的推导.

一、复习引入

1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提问1 这种解法的(理论)依据是什么?

提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)

2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)

(学生活动)用配方法解方程 2x2+3=7x

(老师点评)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

补:(5)(x-2)(3x-5)=0

三、巩固练习

教材第12页 练习1.(1)(3)(5)或(2)(4)(6).

四、课堂小结

本节课应掌握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.

(4)初步了解一元二次方程根的情况.

五、作业布置

教材第17页 习题4

初中数学教案范文二:因式分解法

掌握用因式分解法解一元二次方程.

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0 (2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1 解方程:

(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是(  )

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页 练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页 习题6,8,10,11

初中数学教案范文三:一元二次方程的根与系数的关系

1.掌握一元二次方程的根与系数的关系并会初步应用.

2.培养学生分析、观察、归纳的能力和推理论证的能力.

3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.

4.培养学生去发现规律的积极性及勇于探索的精神.

重点

根与系数的关系及其推导

难点

正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.

一、复习引入

1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.

2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

二、探索新知

解下列方程,并填写表格:

方程 x1 x2 x1+x2 x1•x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

观察上面的表格,你能得到什么结论?

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

解下列方程,并填写表格:

方程 x1 x2 x1+x2 x1•x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小结:根与系数关系:

(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.

即:对于方程 ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1•x2=ca

(可以利用求根公式给出证明)

例1 不解方程,写出下列方程的两根和与两根积:

(1)x2-3x-1=0   (2)2x2+3x-5=0

(3)13x2-2x=0 (4)2x2+6x=3

(5)x2-1=0 (6)x2-2x+1=0

例2 不解方程,检验下列方程的解是否正确?

(1)x2-22x+1=0 (x1=2+1,x2=2-1)

(2)2x2-3x-8=0 (x1=7+734,x2=5-734)

例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)

例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.

变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

三、课堂小结

1.根与系数的关系.

2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.


20_年初中数学教案优秀范文模板

推荐阅读:

  乡村振兴调研报告臻选

  最新初中物理教案

  安全教育班会教案范文(严选3篇)

  初一英语教案设计

  七年级预防溺水主题班会教案

  2023年开学第一课完整版教案